Simulation and Planning of a Magnetically Actuated Microrobot Navigating in the Arteries

Karim Belharet, David Folio*, Member, IEEE, and Antoine Ferreira, Member, IEEE

Abstract—This paper presents a preoperative microrobotic surgical simulation and planning application. The main contribution is to support computer-aided minimally invasive surgery (MIS) procedure using untethered microrobots that have to navigate within the vascular networks. We first propose a fast interactive application (with endovascular tissues) able to simulate the blood flow and microrobot interaction. Second, we also propose a microrobotic surgical planning framework, based on the anisotropic fast marching method (FMM), that provides a feasible pathway robust to biomedical navigation constraints. We demonstrate the framework performance in a case study of the treatment of peripheral arterial diseases.

Index Terms—Anisotropic path planning, blood flow simulation, microrobotics, minimally invasive surgery (MIS).

I. INTRODUCTION

PREOPERATIVE surgical simulation and planning is a critical stage in medical decision making and in the design of novel microrobotic minimally invasive surgery (MIS) techniques [1], [2]. Due to the lack of anatomic consistency, preoperative planning with virtual and physical models of the system could improve the chances of achieving predictable intraoperative results. For this aim, it is mandatory to cope with potential conflicts between the intervention purposes of the microrobotic surgical system and the biological laws governing the patient body. To improve the microrobotic MIS procedure, significant progress has been made in three-dimensional (3-D) imagers [3], modeling software for anatomy and vascular networks representation [4], and biomechanical modeling of interactions between tissues and MIS tools. These advances have been mainly developed for catheter or guidewire-based operations [5], [6], or gastrointestinal endoscopic capsules [7], [8]. In contrast, there have been fewer works in the area of untethered microrobots for cardiovascular interventions [1], [9]. To date, even in the a of a successfully performed procedure, the choice of a microrobot’s design (shape, size, materials, locomotion abilities, etc.) plays a key role. Indeed, these factors affect the microrobot propulsion that depends mainly on the motile, fluidic, and friction forces between the endovascular device and the vessel. Therefore, the development of training applications or interactive planning systems, where the robotician or physician is able to design different microrobots and then test their behaviors in a patient-specific context, will be very helpful. A few applications focusing on interventional MIS have been developed or commercialized [10], [11] until now. These applications include interactive models of catheters [5] and endoscopic capsules [7], but do not address the challenging topic of modeling untethered microrobots [12] and their complex interactions with the blood flow and vessels walls [1]. Most proposed solutions use finite-element modeling (FEM)-based representations, or computational fluid dynamics (CFD) simulations. Such approaches are suitable when accurate modeling or simulation are a primary concern. However, they usually rely on commercial software (such as Ansys Fluent or Comsol Multiphysics), and the computation time (usually in hours) is incompatible with interactive simulation or clinical practice. Moreover, planning a reliable and feasible path against the blood flow and vessel networks constraints is an important issue to be addressed for innovative microrobot-aided MIS applications. For instance, Martel et al. propose to use potential fields and the breadth-first search algorithm to find a preplanned path [13] which are then delimited by waypoints [9]. A first drawback in such discrete graph-search algorithms is that they suffer from metrication errors [14]. Moreover, it is difficult to cope explicitly with the anisotropy. Finally, most untethered microrobot propulsion schemes based on magnetic pulling have to face important constraints related to coils technology. The planned path has to reduce the maximum pulling gradients being applied to the coils, the operation time and to maintain the rising temperature of the coils within operating limits. It actually impacts different endovascular magnetic actuation systems based on magnetic resonance navigation (MRN) [9], or Octomag system [15]. Thus, the planned pathway must satisfy these considerations to be reliable.

This study aims to propose a preoperative microrobotic surgical planning application with blood flow simulation that may use patient-specific data. In particular, the computer-aided optimization of the untethered microrobots for an innovative MIS procedure is the main focus of our study. First, in Section II, after introducing the system model used by the microrobotic surgical simulation, we present the surgical planning framework. The proposed framework is based on the fast marching method (FMM) [16]. In our previous work [17], [18], the classical FMM with isotropic cost function has been proposed to extract the vessel centerline path. This first solution is suitable mainly to navigate far away from the vessel wall. However, as navigation in real vascular networks is directionally constrained...
by the biological environment, a new framework based on the anisotropic FMM [19] is proposed in this paper. Furthermore, the proposed method allows a multiparameter optimization of the navigation path that takes into account: 1) the technology of the magnetic system; 2) the microrobot design; and 3) the physiology of the patient. Finally, our approach ensures a smooth conveyance of the microrobot to destination robust to cardiovascular navigation constraints while minimizing the energy expenditure, to reduce the gradient pulling and system overheating. Specifically, we aim to get a feasible path by finding the min-energy pathway (which is not necessarily the shortest). Section III briefly describes our developed microrobotic surgical simulation and planning application, before illustrating its performance. As an illustration, we consider the treatment of peripheral arterial diseases (PAD), such as artery narrowing (stenosis). For instance, one possible surgical application is to target atherosclerotic plaques in stenosed arteries. One of the most common strategies is angioplasty, occasionally with stent implantation. Despite the high success rate, these solutions are not satisfactory, as vessel damage, infection, and restenosis can appear at a later stage. Otherwise, a surgical microrobot for such vascular applications offers some novel solutions [1]. Specifically, microrobotic intervention based on chemical, mechanical, or mechanochemical could be achieved to treat vascular obstructions [2]. Finally, we discuss some open issues, evaluate the computational efficiency, and outline some future extends in Section IV. This study is concluded in Section V.

II. METHODS

A. Modeling Overview

Different types of devices could be used for MIS interventions from catheter and guidewires, to wireless microcapsules or microcarriers [1]. In this framework, any kind of untethered microdevice (termed as microrobot throughout the text) that has to perform endovascular navigation within blood flow is considered. More precisely, we consider any microsystem that could be modeled as

\[m \dot{v} = f_\alpha(a) + f_t(v) + f_{\text{ext}}(x) \]

where \(v \) is the velocity of the device; \(m \) its mass; \(f_\alpha(a) \) is the controlled force, that is related to the control action \(a \in A \), with \(A \) the admissible controls set; \(f_t(v) \) denotes the fluid flow hydrodynamic drag force; and \(f_{\text{ext}}(x) \) are all other external forces, as depicted in Fig. 1. Different external forces could be added to the model (1) such as the weight \(f_w \), electrostatic \(f_e \), and van der Waals force \(f_v \), contact or steric forces. The interested reader may refer to [20] for detailed formulation of microforces. Fig. 2 illustrates the evolution of these microforces with varying microrobot radius \(r \) and wrt its distance to vessel wall \(\delta \). In particular, Fig. 2(f) shows that close to the centerline of the vessel (\(\delta = R \)) the electrostatic and the van der Waals microforces are negligible compared to the other relevant forces. In addition, if the microrobot is never in contact with the vessel wall, the contact force could be omitted. Finally, most of the time because of the size of the microsphere, the effect of Brownian motion is also neglected.

B. Navigation Planning in Flow

1) Minimal Path Planning: Classically, a navigation pathway could be defined as a curve \(\mathcal{P} \) linking a starting point \(x_0 \) to any point \(x \). In the general case, a curve is a minimal path, also called a geodesic, wrt the metric \(\omega \), if it globally minimizes the energy functional

\[E_\omega(\mathcal{P}) = \int_\mathcal{P} \omega(P(t), \dot{P}(t)) dt \]

with \(l \) being the arclength parameter. The solution to the minimum path finding problem (2) could be obtained through the computation of the distance map \(\mathcal{U} : \mathcal{C} \to \mathbb{R}^+ \), defined as:

\[\mathcal{U}(x) = \min_{\mathcal{P}} E_\omega(\mathcal{P}), \text{ for any } \mathcal{P} \text{ linking } x \text{ to } x_0 \text{ in the domain } \mathcal{C} \subset \mathbb{R}^d \]

In this context, Sethian [16] has proposed the FMM. Indeed, the FMM converges to a smooth
solution in the continuous domain even when it is implemented on a sampled environment, contrary to discrete graph-search algorithms. Especially, in the isotropic case, the FMM satisfies the Eikonal equation

\[
\begin{align*}
\| \nabla U(x) \| & = w(x), \quad \forall x \in C \\
U(x_0) & = 0
\end{align*}
\]

(3)

where the isotropic cost function \(w : C \to w(x) \in \mathbb{R}^+ \) is the metric. As the map \(U \) has a single local minimum, the geodesic can be retrieved with a simple gradient descent on \(U \) from a targeted seed \(x_s \) to \(x_0 \). The FMM provides a continuous solution to the minimum path problem by employing upwind differences and a causality condition [16]. The key issue of the FMM is then to get an appropriate metric \(w(x) \) which drives the front expansion efficiently to find a geodesic \(P \). In previous works [17], [18], we have proposed to design such a metric on spatial consideration

\[w : x \in C \to \text{Vesselness}(x) \in \mathbb{R}^+ \]

(4)

where \(\text{Vesselness}(x) \) is a vesselness enhancement function. A typical \(\text{Vesselness}(x) \) function could be designed using a multiscale analysis of the Hessian matrix, as proposed by Frangi et al. [21] or Sato et al. [22]. This approach then allows us to find the vessel centerline geodesic \(P_v \), as the considered vesselness filter gives their maximal response in the vessel center. We have applied this procedure to different sets of data, in 2-D [17] as well as in 3-D [18].

As mentioned previously, the contact, electrostatic, and van der Waals microforces are negligible when the microrobot navigates close to the centerline \(P_v \) (cf., Fig. 2). \(P_v \) is then the best solution to navigate far away from the vessels wall. However, navigation in real vascular networks is constrained by the biological environment, and can strongly modify the system behavior, leading to incompleteness in real intraoperative applications.

2) Anisotropic Path Planning: Navigating in blood flow implies some directional constraints. When the path finding problem has some preferred directions of travel it becomes anisotropic, i.e., the solutions depend on the configuration and directional constraints. In [19], the authors noticed that the FMM could be applied to isotropic or anisotropic problems, and they provided a numerical scheme to solve static Hamilton–Jacobi equations of the form

\[
\begin{align*}
\| \nabla U(x) \| - \varpi(x, \nabla U(x)) & = 0, \quad \forall x \in C \\
U(x_0) & = 0
\end{align*}
\]

(5)

where the anisotropy expansion is the result of the dependence of \(\varpi \) on \(\nabla U(x) \). Nevertheless, the computational complexity of the FMM in the anisotropic case is growing significantly with the amount of anisotropy. The literature provides different variants of the FMM to deal with anisotropy, such as using a recursive approach [23], or iterative schemes [24]. Furthermore, in [14] anisotropic cost functions have been also proposed. The proposed basic idea is to take advantage of the original FMM efficiency, and to model the anisotropy thanks to a vector \(f \) of a field of force \(F \), leading to the following anisotropic metric:

\[
\varpi : (x, f) \in C \times F \mapsto \varpi(x, f) \in \mathbb{R}^+.
\]

(6)

Such an anisotropic cost function leads to anisotropic front propagation, and gives better geodesic than isotropic FMM. To embed the directional cost function \(f \) within such an anisotropic FMM, different specific cost functions have been proposed mainly for autonomous underwater vehicles (AUVs) [14], [25]. The drag and flow forces have a significant effect on the motion of the AUV, which is a common problem with our microrobot planning problem. However, the proposed solution mainly deals with either the min-distance or the min-time path finding problem, and not minimizing directly neither the dynamics nor the motion applied to the system. Moreover, most existing approaches classically simplify the problem by assuming constant vehicle speed, or only spatially varying flow fields without time variation. Such limitations can generate physically unfeasible paths. Especially, in the presence of strong flows, incompleteness or incorrectness issues are reported [25].

3) Minimum-Feasible-Energy Planning: Most microrobot propulsion schemes usually require a limitation of the power consumption, and have a maximum available power. Moreover, considering only the min-time or min-distance problem usually leads to compute high motion forces that reach the goal as fast as possible. But in our context, high motion implies high drag forces, and then high motion force \(f_s \) (limited by the maximum available magnetic forces) to be able to reach the targeted area. To minimize the energy expenditure, a basic idea is to use a classical power functional expression, that is

\[
p(x, a) = \langle f(x, a) \cdot v(x) \rangle
\]

(7)

where \(\langle \cdot \rangle \) is the inner product of \(\mathbb{R}^d \), \(v \) is a velocity, and \(f(x, a) \) is the applied resultant force that embeds the controlled action \(a \in A \). Using the optimal control approach, we propose the following anisotropic cost function:

\[
\varpi(x, f) = \max_{a \in A} (f(x, a) \cdot v(x)).
\]

(8)

This anisotropic cost formulation, as in [14] and [25], naturally incites the device to move in the direction of the force \(f \). Especially, \(\varpi(x, f) \) will imply that the FMM propagation (5) follows the force field constraints, that is, \(\frac{\nabla U(x)}{\| \nabla U(x) \|} \propto f \). Finally, this new anisotropic formulation (8) using optimal control aspects embeds the system motion wrt a finite defined admissible control set \(A \). This ensures that the given geodesic \(P \) is really feasible by the system and minimizes energy expenditure. Indeed, the metric \(\varpi(x, f) \) allows us to consider both the biological constraints and the microrobot capabilities.

III. RESULTS

A. Simulation and Planning Tool

The proposed framework has been integrated in a dedicated interactive microrobot surgical simulation and planning application. This application, depicted in Fig. 3, is based on the visualization toolkit (VTK) [26], the insight segmentation and registration toolkit (ITK) [27], and the Qt toolkit [28]. Through
Fig. 3. Preoperative microrobot surgical simulation and planning application: (a) application workflow and (b) vessel centerline extraction example.

the user interface [see Fig. 3(b)], the surgeon realizes the following operating mode iteratively.

1) Specifications: The surgeon provides different parameters in the software [in the left panel on Fig. 3(b)] related to: a) the physiology of the patient (blood flow and viscosity, vessel’s size and topology); b) the technology of the magnetic system (coil’s slew rate, maximum magnetic gradients, power limitations); and c) the microrobot design (size, density, magnetic saturation).

2) Simulations: The surgeon initiates the simulation and planning process wrt the specification constraints.

3) Data analysis: The surgeon analyzes the power functional mapping and force field wrt microrobot specifications. This iterative process is conducted until the preoperative planning of plaque removal specifications are satisfied. We focus in the sequel on the main contributions of this paper that is the simulation and reliable vascular navigation planning.

B. Case Study: Peripheral Arterial Diseases

To assess the overall framework, we have performed a series of tests for both the microrobot within blood vessel model simulation and preoperative microrobotic MIS planning. We illustrate the proposed application for the treatment of PAD. One possible application is to locate atherosclerotic plaque in stenosed arteries. In particular, stenosis implies an abnormal narrowing of the vessel which causes a decrease in blood flow. Different plaque removal tasks have already been realized by magnetically actuated microrobots navigating in occluded blood vessels [2]. In [29], shear targeting of a thrombolytic drug in a mouse-arterial thrombosis model using a microrobot has been successfully tested. In [30], the rotation of the magnetic microrobot is at the origin of a drilling action through an occlusion in a vessel. In the following, we propose a preoperative planning of a magnetic microrobot navigating within the vasculature to the stenosed artery for plaque removal. We will consider here as a case study the real magnetic resonance angiography (MRA) clinical dataset depicted in Fig. 4. As the proposed framework works in \(C \subset \mathbb{R}^d \) (with \(d = 2, 3, \ldots \)), for the sake of clarity of the representation, we will only show here a maximum intensity projection (MIP) image of the MRA. Here, the patient has a single-level disease represented by an isolated stenosis in the iliac artery. As it is still a challenging issue to identify automatically the patient pathology and its location, the PAD is manually defined by the user.

C. Simulation Results

As previously mentioned, the simulation is based on a physics-based model (presented in details in [20]). When interactive simulation is required (for training, intervention planning, etc.), a tradeoff between computation time and accuracy has to be found. In our application, computational efficiency is more important than small-scale details, as we aim to increase the users interaction capabilities, whereas precision could be achieved using FEM or CFD simulation. To speed up either the blood flow velocity or the force fields simulation computation, the basic FMM is extended to be able to compute these vector fields during the front propagation [see Fig. 3(a)]. Indeed, using \(\text{Vesselness}(\mathbf{x}) \) isotropic cost function, the FMM front will extend only within the vascular structure. This allows us to take advantage of the FMM efficiency, without using the whole dataset grids, and significantly reduce the overall computational time.

The blood flow velocity field simulation of the considered case study is illustrated in Fig. 5. The interactive simulation tool takes into account that blood flow velocity intensity \(\mathbf{v}_f \) on the vessel centerline decreases wrt vessels radii, that is from about \(\| \mathbf{v}_f \| \approx 400 \text{ mm/s} \) in descending aorta with a radius \(R \approx 6.5 \text{ mm} \), to \(\| \mathbf{v}_f \| \approx 250 \text{ mm/s} \) in external iliac artery with a radius \(R \approx 3.5 \text{ mm} \). As one can see, the blood flow velocity field is modified in the considered stenosis case (narrowed vessel shown in Fig. 5). The corresponding force field that will act on a neodymium microrobot with a radius \(r = 500 \mu \text{m} \) is shown in Fig. 6. In this simulation, only the weight \(\mathbf{f}_g \) (in the \(\mathbf{g} \)-axis direction), drag \(\mathbf{f}_d \), and electrostatic \(\mathbf{f}_e \) forces are
calculated. Let us notice that any force that can have an analytical expression and can be embedded in (1) can easily be added to the application. Finally, the realized interactive simulation application is also able to deal with periodic time-varying pulsatile blood flows, as presented in Fig. 7. The user defines the periodic pulsatile blood flow parameters [20], a number of time-steps, and can then browse the time frame of either the blood flow velocity or the applied force field. Fig. 7(a) illustrates a typical periodic time-varying pulsatile blood flow that takes place in the descending aorta, and the row 7(b) describes the corresponding velocity field. Fig. 7(c) and (d) shows the resulting force fields applied on the microrobot for two case studies, a microrobot of radius of $r = 250 \mu m$ and $r = 1.5$ mm, respectively. This demonstrates that when the microrobot’s radius r or weight f_g increases, the resultant force becomes more important.

D. Microrobotic Surgical Planning Demonstration

Once the microrobot is specified (size, materials, etc.), the system’s planning step only requires as user’s input the starting x_0 and ending points x_g. Next, to deal with the anisotropy of the media, the blood flow and force fields simulation results are used to compute the power functional map (7). The key issue is then to generate the controlled force field f_a, $\forall a \in A$. First, the action magnitude has to be defined wrt available actuation command. The action magnitude is usually the controlled magnetic gradient ($a = \nabla B$), which implies the following magnetic force on a spherical device

$$f_a(\nabla B) = D \tau_m \frac{4}{3} \pi r^3 (M \nabla) \nabla B$$

(9)

where r is the microsphere radius, $\tau_m \in [0; 1]$ is the volume ratio of the magnetic material, M its magnetization, and $D \in [0; 1]$ is the duty cycle, i.e., the ratio between the duration of the applied magnetic gradient for propulsion to the total period T.

The magnetic gradient used to propel a magnetic microrobot is assumed to be generated from various medical magnetic steering systems: electromagnetic-based Actuation (EMA) systems such as the magnetic catheter steering system (a larger version of the Octomag system [15]) or the one developed in [30]; and MRN. The EMA systems are capable of generating maximum magnetic gradient fields up to $a_{\text{max}} = 350$ mT/m in closed-loop navigation control. In this case, the duty cycle is considered equal to $D = 1$ since the imaging modality is provided by either optical microscopy or X-ray imaging. These systems are more suitable for the navigation of millimeter-sized hard magnetic microrobots. The MRN system is based on clinical MRI systems, without any hardware upgrades. Such magnetic systems are usually limited to maximum values to $a_{\text{max}} = 80$ mT/m in closed-loop navigation control. Generally, the duty cycle is $D < 1$, since MR-imaging sequences and MR-tracking are provided by the same scanner to gather feedback positional information during MRN [9]. The MRN approach is more suitable for micrometer-sized soft magnetic microrobots. However, it should be noticed that experimental results have shown that therapeutic particles (known as TMMC), 50–60 μm diameter were navigated in arteries (rabbit models) and that MRN was done with gradient coils (capable of 450 mT/m with inner diameter suitable for limbs or head interventions) installed in the tunnel of clinical MRI scanners [31].

Our proposed FMM strategy can be adapted to each specific case by taking into account the duty cycle D, the slew rate of the magnetic coils, and the maximum temperature coils. Second, the
Fig. 8. Planning results on varying control action influence for a neodymium microrobot of size 250 μm and 750 μm: (a) energy functional $E_\omega (P)$ wrt the action magnitude (i.e., the magnetic gradient) and (b) zoomed view of the corresponding geodesics: P_c, the vessel centerline and P_a, the min-energy path for the varying action magnitude.

action direction should be defined. To this aim, we used some a priori knowledge about the goal direction, defined between x_0 and x_g, provided by the isotropic FMM using Vesselness(x) cost function [see Fig. 3(a)]. Indeed, this FMM step provides the distance map U_c between x_0 and x_g (or reciprocally), and then the goal direction field $\nabla U_c (x)$. This helps to define the appropriate guidance field $G(x) \propto \nabla U_c (x)$. Some variations could be added on the goal direction field to enlarge the guidance field set. The admissible control set \mathcal{A} can then be defined as

$$\mathcal{A} = \{ A \times G \}$$

where $A \subset [0; a_{\max}]$ is a finite set of action magnitudes and $G = \{ G(x) \sim [0; \frac{1}{r}] \}$ is the guidance field set. Let us recall that \mathcal{A} could be filtered to consider some technological constraints (such as the duty cycle, or the magnetic slew rate).

This planning framework has been validated on the case study dataset considering different microrobot sizes navigating within arteries. First, Fig. 8 demonstrates the influence of the motion force magnitude on finding the minimum-feasible-energy path. We noticed that as the motion force magnitude increased, the required energy $E_\omega (P)$ increased exponentially. This is significant for important microrobot size [$r = 750 \mu m$ in Fig. 8(a)]. Indeed, Fig. 8(b) shows that with much power the microrobot is more able to leave the vessel’s centerline P_c (provided by the isotropic FMM) to reach the goal faster. If limited magnetic gradient magnitudes are available to propel the microrobot, such as in clinical MRI, Fig. 9 shows that increasing its size should overcome the power limitation. Therefore, the proposed min-energy path planning has been evaluated for various microrobot sizes and for the EMA and MRN systems, as reported in

Fig. 9. Planning results on varying control action influence for a neodymium microrobot of size 1.5 and 2.5 mm in the clinical MRI context.

Fig. 10. Planning results with varying microrobot radii, for an EMA system ($a_{\max} = 350 \text{ mT/m}$) and a MRN ($a_{\max} = 80 \text{ mT/m}$): (a) geodesic curvature length (in mm) and (b) energy functional.

Fig. 11. Planning results using the proposed anisotropic cost function for a neodymium microrobot with $r = 1.5 \text{ mm}$: three targeted points are specified (x_{g1}, x_{g2}, and x_{g3}). The colored map depicted the power functional level.

Fig. 10. We can notice that for a microrobot radius bigger than 1.5 mm the curve length increases slightly, and starts to decrease significantly below 1 mm [cf., Fig. 10(a)]. Furthermore, Fig. 10(b) depicts that the energy functional decreases significantly with the microrobot radius. In fact, the action force $f_a (a)$ decreases following a cubic power (L^3), minimizing the power budget. Therefore, it is more difficult for neodymium microrobots with a size below 750 μm to overcome the blood flow constraints that take place in the artery. Finally, as an illustration of the blood flow influence, Fig. 11 shows the planning results of our minimum-feasible-path finder for three targeted points...
(x₁, x₂, and x₃), and Table I lists the curve lengths of their geodesic (P₁, P₂, and P₃) and the energy functional Eₑₚ(P). The min-energy geodesic is curve P₁, while the shortest length is P₂. This means that although P₃ is longer than P₂, P₃ consumes less energy.

IV. DISCUSSION

The most computationally intensive part of the micro-robotic surgical application is the vesselless filter (that provides Vesselness(x) cost function) based on a multiscale analysis of the Hessian matrix [21]. This multiscale interpretation of eigenvalues of the Hessian matrix could be improved thanks to parallelization through GPU implementation. Furthermore, as mentioned, instead of using the overall dataset grid (in the case study N = 147 456), the vector field simulations are performed on only 18 941 nodes corresponding to the vasculature. Thus, on an Intel Core 2 3 Ghz processor, one simulation takes less than 150 ms. For the periodic pulsatile blood flow, this allows us to compute one cardiac cycle with 50 time steps in less than 8 s. Therefore, the combination of the microrobot and the cardiovascular model together with the FMM may become accurate enough to support interactive micro-robotic surgical planning applications. Finally, in the planning step, the main computational aspect remains on action set A generation. This set A is related to the dimension of the action magnitude set and guidance field set G, specified by the users. For the case study with dim A = \{10 \times 10\}, the overall planning procedure needs a calculation time of about 36 s. This computational efficiency ensures a high level of interactivity for preoperative simulation, planning, and navigation.

In the simulation process, we have chosen to focus on computational efficiency rather than on accurate blood flow simulations. Nonetheless, the vasculature and blood flow modeling are still strongly investigated by the communities, and remain an open issue. In future extends, we will use some analytical modeling of vessel bifurcation as in [20], to improve the blood flow simulation accuracy. Although the visualization of vector fields is still a challenging issue (especially in 3-D), more intuitive flow rendering (such as streamline, streamribbon, etc.) could also be helpful for the micro-robotic surgery applications.

V. CONCLUSION

In this study, a micro-robotic surgical simulation and planning has been presented for the treatment of PAD. However, the proposed framework could also be applied to other regions of the body, different therapies, and various MIS microrobots. Especially, the results shows that interactive applications can be helpful to design the suitable microrobot design (e.g., shape, size, materials, etc.) wrt anatomic consistency to improve micro-robotic surgical applications. Hence, the preoperative surgical planning with blood flow simulation provides useful information for understanding cardiovascular pathologies, predicting their onset and choosing an optimal therapy strategy for an innovative micro-robotic MIS procedure.

REFERENCES

<table>
<thead>
<tr>
<th>Geodesic #</th>
<th>Length (mm)</th>
<th>Energy Eₑₚ(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₁</td>
<td>360.886</td>
<td>0.6765</td>
</tr>
<tr>
<td>P₂</td>
<td>359.612</td>
<td>0.5118</td>
</tr>
<tr>
<td>P₃</td>
<td>361.735</td>
<td>0.4879</td>
</tr>
</tbody>
</table>

