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Abstract: In this paper, we address the problem of estimating image features whenever they become
unavailable during a vision-based navigation task. The method consists in analytically integrating the
relation linking the visual features motion in the image to the 3D camera motion. Simulation results
validate our work.

I. INTRODUCTION

Visual servoing techniques aim at controlling the robot motion using visual features provided by a camera
[1, 2]. But, they cannot be used anymore if the image data are lost during the execution of the task. Thus
the visual features visibility during a vision-based mission appears as an interesting and challenging
problem. Classically, the proposed solutions aim at avoiding occlusions and loss. Most of these solutions
are dedicated to manipulator arms because they allow to benefit from redundancy to treat this kind of
problem [3, 4]. Other techniques preserve visibility by path-planning in the image [5], by acting on
specific DOFs [6, 7, 8], by controlling the zoom [9] or by making a tradeoff with the nominal vision-
based task [10]. In a mobile robotic context, when executing a vision-based navigation task in a cluttered
environment, it is necessary to preserve not only the visual features visibility but also the robot safety. A
first answer to this double problem has been proposed in [11, 12]. The developed methods allow to avoid
collisions, occlusions and target loss when executing a vision-based task amidst obstacles. However they
are restricted to missions where it is possible to avoid both occlusions and collisions without leading to
local minima. Therefore, a true extension of these works would be to provide methods which accept that
occlusions may effectively occur. A first solution is to allow some of the features to appear and disappear
temporarily from the image as in [13]. However, this approach is limited to partial occlusions. Another
solution which is considered in this paper is to compute the visual features as soon as some or all of them
become unavailable. Total visual features loss can then be specifically treated.

The paper is organized as follows. In section II, we model the system and state the problem. In
section III, we propose a method allowing to compute the visual features when they become unavailable.
Section IV presents the application context, and shows some simulation results validating our work.

II. MODELLING AND PROBLEM STATEMENT
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Fig. 1: Nomadic SuperScout II.

Modelling of the robotic system: We consider the mobile robot Su-
perScout II1 equipped with a camera mounted on a pan-platform (see
figure 1). It is a small cylindric cart-like vehicle, dedicated to indoor
navigation. A DFW-VL500 Sony color digital IEEE1394 camera cap-
tures pictures in YUV 4:2:2 format with 640×480 resolution. An im-
age processing module extracts points from the image. The robot is
controlled by an on-board laptop computer running under Linux on
which is installed a specific control architecture called GenoM (Gener-
ator of Module).

First, let us model our system to express the camera kinematic screw. To this aim, consider figure 2.
(x,y) are the coordinates of the robot reference point M with respect to the world frame FO. θ and ϑ

are respectively the direction of the vehicle and the pan-platform with respect to −→x 0 and −→x M. P is the
pan-platform center of rotation, Dx the distance between M and P. We consider the successive frames:

1The mobile robot SuperScout II is provided by the AIP-PRIMECA.
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Fig. 2: Modelisation.

FM (M,−→x M,−→y M,−→z M) linked to the robot, FP (P,−→x P,−→y P,−→z P)
attached to the pan-platform, and FC (C,−→x c,

−→y c,
−→z c) linked

to the camera. The control input is defined by the vector
q̇ = (v,ω,ϖ)T , where v and ω are the cart linear and angular
velocities, and ϖ is the pan-platform angular velocity with re-
spect to FM. For this specific mechanical system, the kinematic
screw T C is related to the joint velocity vector by the robot ja-
cobian J : T C = Jq̇. As the camera is constrained to move hor-
izontally, it is sufficient to consider a reduced kinematic screw
T C

r , and a reduced jacobian matrix Jr as follows:

T C
r =

 V−→y C

V−→z C

Ω−→x C

 =

 −sin(ϑ) Dx cos(ϑ)+Cx Cx

cos(ϑ) Dx sin(ϑ)−Cy −Cy

0 −1 −1

 v
ω

ϖ

 = Jr q̇ (1)

Problem statement We aim at realizing a vision-based navigation task even if the visual features are
temporarily lost during its execution. We propose hereafter a method allowing to compute the visual
data when they become unavailable.

III. VISUAL DATA ESTIMATION

In this section, we address the visual data estimation problem. We first introduce some preliminaries and
state the estimation problem before presenting our approach.

A. Preliminaries
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Fig. 3: The pinhole camera model

We consider a static landmark with respect to which is defined the
vision-based navigation task. We assume that it can be characterized
by n interest points which can be extracted by our image processing.
Then, in our case, the set of the considered visual data is represented
by a 2n-dimensional vector s made of the coordinates (Ui,Vi) of
each projected point Pi in the image plane (see figure 3). For a fixed
landmark, the variation of the visual signals ṡ is related to T C by
means of the interaction matrix L as shown below [14]:

ṡ = L(s,z)T C = L(s,z)Jr q̇ (2)

with z = [z1 . . .zn]T , where zi is a vector representing the depth of each projected point Pi. This matrix
allows to link the visual features motion in the image to the 3D camera motion. It depends mainly on the
depth z and on the considered visual data. In our specific case2, L is a 2n×3 matrix deduced from the
classical optic flow equations [14] as follows:

Li(Pi,zi) =

[
0 U

zi

UiVi
f

− f
zi

Vi
zi

f + Vi2
f

]
where f is the camera focal and i = 1..n (3)

B. Estimation Problem Statement

Now, we focus on the problem of estimating (all or some) visual data s whenever they become unavail-
able. Different approaches, such as tracking methods and signal processing techniques, may be used to
deal with this kind of problem. Here, we have chosen to use a simpler approach for several reasons.
First of all, most tracking algorithms relies on measures from the image which is unavailable in our case.
Second, as it is intended to be used to perform complex navigation tasks, the estimated visual signals
must be provided sufficiently rapidly with respect to the control law sampling period. Finally, in our
application, the initial value of the visual features to be estimated is always known, until the image be-
comes unavailable. Thus, designing an observer or a filter is not necessary, as this kind of tools is mainly
interesting when estimating the state of a dynamic system whose initial value is unknown. Another idea
is to use a 3D model of the object together with projective geometry in order to deduce the lacking
data. However, this choice would lead to depend on the considered landmark type and would require

2Analytical expressions of L for different kinds of features can be found in [14].



to localize the robot. This was unacceptable for us, as we do not want to make any assumption on the
landmark 3D model. Therefore, we have chosen to solve (2) on the base of the visual signals previous
measurements and of the control inputs q̇.

Now, let us state our problem. As (2) depends on depth z, it is necessary to evaluate this parameter
together with the visual data s. Our idea is to express analytically the variation z with respect to the
camera motion. As we consider a target made of n points, we need first to determine the depth variation
of each of these points. It can be easily shown that, for one 3D point p of coordinates (x,y,z)T in Fc

projected into a point P(U,V ) in the image plane as shown in figure 3, the depth variation ż is related to
the camera motion according to: ż = LzT C

r = LzJrq̇, with Lz = [0 − 1 z
f V ]. Thus, for the considered

task, the system to be solved for one point P(U,V ) is given by:
U̇ = U

z V−→z C
+ UV

f Ω−→x C

V̇ =− f
z V−→y C

+ V
z V−→z C

+
(

f + V 2

f

)
Ω−→x C

ż =−V−→z C
− z

f V Ω−→x C

(4)

Then, introducing ψ = [U1 V1 . . . Un Vn, z1 . . . zn]T , the differential equations to be solved for the consid-
ered landmark made of n points are given by: ψ̇ =

(
Ls

T Lz
T )T Jr q̇ = ϕ(ψ).

C. Analytical resolution

Now let us address the resolution problem. We have already solved the Ordinary Differential Equations
(ODE) ψ̇ = ϕ(ψ) by using different numerical schemes [15] [16]. In this work, we propose to analytically
solve ψ̇ = ϕ(ψ) by integrating it during the control law sampling period Tech, that is for any t ∈ [tk, tk+1].
As q̇ remains always constant during this time interval, the system to be solved expresses as:{

ψ̇ =
(

Ls
T Lz

T )T Jr(tk) q̇(tk)
ψ(tk) = ψk =

(
sT

k ,zT
k

)T (5)

where q̇(tk) = q̇k = (vk,ωk,ϖk)T . ψk is the initial value of ψ, which can be considered known as sk is
directly given by the feature extraction processing (before their loss) and zk can be usually characterized
from an off-line process. After some computation, we get the following solution for one point P(U,V )
(a detailed resolution is available in [17]):

U(t) =
zkUk

z(t)
and V (t) = f

ż+ vk cos(ϑ(t))+Dxωk sin(ϑ(t)))−Cy(ωk +ϖk)
z(t)(ωk +ϖk)

(6)

where z(t) is given as shown here:
z(t) = c1 sin(A1 (t− tk))+ c2 cos(A1 (t− tk))−Dx cos(ϑ(t))+ vk

ωk
sin(ϑ(t))−Cx if ωk 6= ϖk and ωk 6= 0

z(t) = − vk
ϖk

(sin(ϑ(t))− sin(ϑk))+ ωk
ϖk

Dx (cos(ϑ(t))− cos(ϑk))+ zk if ωk =−ϖk 6= 0
z(t) = c3 sin(ϖk (t− tk))+ c4 cos(ϖk (t− tk))− vk (t− tk)cos(ϑ(t))+ vk

2ϖk
sin(ϑ(t))−Cx if ωk = 0 and ϖk 6= 0

z(t) = −vk cos(ϑk)(t− tk)+ zk if ωk = ϖk = 0
(7)

by considering:


A1 = (ωk +ϖk)
c1 = −Vkzk

f +Dx sin(ϑk)+ vk
ωk

cos(ϑk)−Cy

c2 = zk +Dx cos(ϑk)− vk
ωk

sin(ϑk)+Cx

c3 = −Vkzk
f + vk

2ϖk
cos(ϑk)−Cy

c4 = zk− vk
2ϖk

sin(ϑk)+Cx

Therefore, the solution requires the determination of ϑ(t). Thus, knowing the initial value ϑk at tk (usu-
ally from embedded encoder), and integrating ϑ̇ = ϖ, yields to: ϑ(t) = ϖk (t− tk)+ϑk. Finally, the solu-
tion for the set of n points is then given by applying the above resolution on: ψ = [U1 V1 . . . Un Vn, z1 . . . zn]T .

IV. APPLICATION

We have chosen to apply our solution in a visual servoing context to compute the visual features when
they are lost or unavailable during a navigation task. The considered mission consists in realizing a
visually guided navigation task amidst obstacles despite possible occlusions and collisions.



A. The vision-based task to be realized

Our goal is here to position the embedded camera with respect to a landmark made of n points. To this
aim, we have applied the visual servoing technique given in [14] to mobile robots as in [18]. In this
approach which relies on the task function formalism [19], the visual servoing task is defined as the
regulation to zero of the following error function:

eVS(q, t) = C (s(q, t)− s∗) (8)

where s∗ is the desired value of the visual signal, while C is a full-rank combination matrix which allows
to take into account more visual features than available DOF [14]. Classically, a kinematic controller, q̇VS

can be determined by imposing an exponential convergence of eVS to zero: ėVS = CLJrq̇VS = −λVSeVS,
where λVS is a positive scalar or a positive definite matrix. Fixing C = L+ as in [14], we get:

q̇VS = J−1
r (−λVS)L+(s(q, t)− s∗) (9)

B. Dealing with occlusions and collisions

Let us recall that our goal is to realize a positioning vision-based task amidst possibly occluding obsta-
cles. Two problems must then be addressed: the visual data loss and the risk of collision. The first one
will be treated using the above estimation technique and the second one thanks to a rotative potential
field method. We describe the control strategy before presenting the simulation results.
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Fig. 4: Obstacle avoidance.

Collision and occlusion detection Our control strategy relies on the
detection of the risks of collision and occlusion. The danger of col-
lision is evaluated from the distance dcoll and the relative orientation
α between the robot and the obstacle deduced from the embedded
US sensors. We define three envelopes around each obstacle ξ+, ξ0,
ξ−, located at d+ > d0 > d− (see figure 4). We propose to model the
risk of collision by parameter µcoll which smoothly increases from
0 when the robot is far from the obstacle (dcoll > d0) to 1 when it is
close to it (dcoll < d−).
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Fig. 5: Occlusion detection.

The occlusion risk is evaluated from the detection of the occlud-
ing object left and right borders extracted by our image processing
algorithm. From them, we can deduce the shortest distance docc
between the image features and the occluding object O, and the dis-
tance dbord between O and the opposite image side to the visual
features (see figure 5). Defining three envelopes Ξ+, Ξ0, Ξ− around
the occluding object located at D+ > D0 > D− from it, we propose
to model the risk of occlusion by parameter µocc which smoothly
increases from 0 when O is far from the visual features (docc > D0)
to 1 when it is close to them (docc < D−). A possible choice for µcoll
and µocc can be found in [11].
Global control law design Our global control strategy relies on µcoll and µocc. It consists in two steps.
First we define two controllers allowing respectively to realize the sole vision-based task and to guarantee
non collision while dealing with occlusions in the obstacle vicinity. Second, we switch between these two
controllers depending on the risk of occlusion and collision. We propose the following global controller:

q̇ = (1−µcoll)q̇VS +µcollq̇coll (10)
where q̇VS is the previously defined visual servoing controller (9), while q̇coll = (vcoll ωcoll ϖcoll)

T handles
obstacle avoidance and visual signal estimation if necessary. Thus, when there is no risk of collision, the
robot is driven using only q̇VS and executes the vision-based task. When the vehicle enters the obstacle
neighborhood, µcoll increases to reach 1 and the robot moves using only q̇coll. This controller is designed
so that the vehicle avoids the obstacle while tracking the target, treating the occlusions if any. It is
then possible to switch back to the vision-based task once the obstacle is overcome. The avoidance
phase ends when both visual servoing and collision avoidance controllers point out the same direction:
sign(q̇VS) = sign(q̇coll), and if the target is not occluded (µocc = 0). In this way, we benefit from the
avoidance motion to make the occluding object leave the image.



Remark 1 Controller (10) allows to treat occlusions which occur during the avoidance phase. However, obsta-
cles may also occlude the camera field of view without inducing a collision risk. In such cases, we may apply to
the robot either another controller allowing to avoid occlusions as done in [11, 12] for instance, or an open-loop
scheme based on the computed visual features.

Obstacle avoidance To design q̇coll, we propose to use a similar approach to the one used in [20]. The
idea is to define around each obstacle a rotative potential field so that the repulsive force is orthogonal
to the obstacle when the robot is close to it (dcoll < d+), parallel to the obstacle when the vehicle is at
a distance d0 from it, and progressively directed towards the obstacle between d0 and d+ (see figure 4).
The interest of such a potential is that it can make the robot move around the obstacle without requiring
any attractive force, reducing local minima problems. We use the same potential function as in [20]:{

U(dcoll) = 1
2 k1( 1

dcoll
− 1

d+ )2+ 1
2 k2(dcoll−d+)2 if dcoll ≤ d+

U(dcoll) = 0 otherwise
(11)

where k1 and k2 are positive gains to be chosen. vcoll and ωcoll are then given by [20]:

q̇base =
(

vcoll ωcoll
)T =

(
kvF cosβ

kω

Dx
F sinβ

)T
(12)

where F =− ∂U
∂dcoll

is the modulus of the virtual repulsive force and β = α− π

2d0
dcoll + π

2 its direction with
respect to FM. kv and kω are positive gains to be chosen. Equation (12) drives only the mobile base
in the obstacle neighborhood. However, if the pan-platform remains uncontrolled, it will be impossible
to switch back to the execution of the vision-based task at the end of the avoidance phase. Therefore,
we have to address the ϖcoll design problem. Two cases may occur in the obstacle vicinity: either
the visual data are available or not. In the first case, the proposed approach is similar to [20] and the
pan-platform is controlled to compensate the avoidance motion while centering the target in the image.
As the camera is constrained to move within an horizontal plane, it is sufficient to regulate to zero the
error egc = Vgc−V ∗gc where Vgc and V ?

gc are the current and desired ordinates of the target gravity center.
Rewriting equation (1) as T C

r = Jbaseq̇base + Jϖϖcoll and imposing an exponential decrease to regulate egc
to zero (ėgc = LVgcT C

r =−λgcegc, λgc > 0), we finally obtain (see [20] for more details):

ϖcoll =
−1

LVgcJϖ

(λgcegc +LVgcJbaseq̇base) (13)

where LVgc is the 2nd row of Li evaluated for Vgc (see equation (3)). However, if the obstacle occludes
the camera field of view, s is no more available and the pan-platform cannot be controlled anymore
using (13). At this time, we compute the visual features by integrating the ODE (5) using the analytical
solution (6). It is then possible to keep on executing the previous task egc, even an occlusion occurs.
The pan-platform controller during an occlusion phase will then be deduced by replacing the real target
gravity center ordinate Vgc by the computed one Ṽgc in (13). We get:

ϖ̃coll =
−1

L̃VgcJϖ

(λgcẽgc + L̃VgcJbaseq̇base), (14)

where ẽgc = Ṽgc−V ∗gc and L̃Vgc is deduced from (3). Now, it remains to apply the suitable controller to the
pan-platform depending on the context. Recalling that parameter µocc ∈ [0;1] allows to detect occlusions,
we propose the following avoidance controller:

q̇coll =
(

vcoll, ωcoll, (1−µocc)ϖcoll +µoccϖ̃coll
)T (15)

C. Simulation results

The proposed method has been simulated using Matlab software. We aim at positioning the camera
with respect to a given landmark despite two obstacles. D−, D0 and D+ have been fixed to 40, 60
and 115 pixels, and d−, d0, d+ to 0.3m, 0.4m, and 0.5m. Figures 6 shows the obtained simulation
results. The task is perfectly performed despite the wall and the circular obstacle. At the beginning
of the task, there is no risk of collision, nor occlusion, and the robot is driven by q̇VS. When it en-
ters the wall neighborhood, µcoll increases and q̇coll is applied to the robot which follows the security
envelope ξ0 while centering the landmark. When the circular obstacle enters the camera field of view,
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µocc increases and the pan-platform control smoothly
switches from ϖob to ϖ̃ob. It is then possible to move
along the security envelope ξ0 while tracking a “vir-
tual” target until the end of the occlusion. When there
is no more danger, the control switches back to q̇VS and
the robot perfectly realizes the desired task. Finally,
let us notice that the error between the measured visual
data s and the estimated ones s̃ remains unsignificant:
about 10−10 which correspond to the roundoff error.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a new approach to de-
termine the visual features whenever unavailable dur-
ing a vision-based task. The proposed method has been
validated in simulation to execute a complex vision-
based navigation task which cannot be executed if oc-
clusions are not tolerated and collisions avoided. How-
ever, this method is restricted to a camera moving in an
horizontal plane and to landmarks which can be char-
acterized with points. Therefore, we aim at extending
this work to consider other kinds of image features and
more complex motions for the camera.
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